| evelB/ue

I/
/]

Threat Spotlight

AsyncRAT in Action: Evading Defenses
with Fileless Malware Techniques

222222222222222

Introduction

The LevelBlue Threat Spotlight deep dives into real-world incidents involving prominent malware families investigated
by the LevelBlue Security Operations Center (SOC) and researched by the LevelBlue Labs threat intelligence team. In
this edition, our SOC team investigates a fileless loader used to deliver AsyncRAT, a Remote Access Trojan (RAT) that
masquerades as a trusted utility in order to steal user credentials.

Fileless malware continues to pose a significant challenge to modern cybersecurity defenses due to its stealthy
nature and reliance on legitimate system tools for execution. Unlike traditional malware that writes payloads to disk,
fileless threats operate in memory, making them harder to detect, analyze, and eradicate. These attacks often exploit
trusted utilities like PowerShell or WScript to download and execute additional payloads, establish persistence, or
communicate with command and control infrastructure.

In the incident described in this report, the attacker used ScreenConnect to gain remote access, then executed a
layered VBScript and PowerShell loader that fetched and ran obfuscated components from external URLs. These
components included encoded .NET assemblies ultimately unpacking into AsyncRAT while maintaining persistence via
a fake “Skype Updater” scheduled task (see figure 1 below).

n e

Victim
¢ Keylogger
d]
[_ 7 E— D — :@ _— _— | R e o —
| — — —_— =
Trojanized Initial Drop Script to Obfuscator.dll AsyncClient.exe Credential Stealer
ScreenConnect “Update.vbs” Dropper Domain
Installer ()
t — &
d] Crypto Wallets

Persists via Scheduled v

Task “Skype Updater”
> @%

Periodic Ping

C2 Communication
30sch20[.]Jduckdns].Jorg

Ab. vbs

Figure 1: AsyncRAT attack chain diagram depicting stages from remote access to data exfiltration.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 2

Initial Discovery

Trojanized ScreenConnect

After attaining the results from our hunt query, our LevelBlue SOC team immediately reached out to the customer.
The involved asset was disconnected from the network to limit damage while we shifted into deeper analysis.

The first sign of malicious behavior emerged with SentinelOne’s Deep Visibility (see figure 2 below) showing command
execution from:

“C:\Program Files (x86)\ScreenConnect Client (57cadb8d38dfe5dd)\ScreenConnect.
ClientService.exe” “?e=Access&y=Guest&h=relay[.]shipperzone[.]online&p=443&s=40..

Figure 2: SentinelOne’s ScreenConnect process creation event

The command line included a relay connection to relay[.]shipperzone[.Jonline, a known malicious domain resolving
to 104[.1194[.141.]102. This domain, and a related one (relay[.]citizenszonel[.[site), have been reported in VirusTotal
and open-source intelligence (OSINT) being leveraged in unauthorized ScreenConnect deployments.

This session appeared to be interactive, initiated with RunRole. RunRole means the execution was kicked off interactively
by a remote session “role” (e.g., attacker operating through ScreenConnect), not by a benign scheduled or background
system process. We then see evidence of the threat actor launching the client via a VBScript (Update.vbs), which was
executed using WScript, further attesting to a manually triggered payload within an active remote session.

Initial Dropper Update.vbs

Upon reviewing this activity, we found a RunFile command to execute a script named Update.vbs from the user’s
documents folder:

“C:\Program Files (x86)\ScreenConnect Client (57cadb8d38dfe5dd)\ScreenConnect.
WindowsClient.exe” “RunFile” *“C:\Users\[REDACTED]\Documents\ConnectWiseControl\Temp\
Update.vbs”

This led us to suspect active remote hands-on-keyboard activity by a threat actor leveraging ScreenConnect.
From this VBScript, we were able to see the command line shown in the SentinelOne event in figure 3 below:

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 3

Figure 3: SentinelOne event showing behavioral indicators for PowerShell command.

Upon execution, the Update.vbs script launched a PowerShell command designed to fetch two external payloads,
logs.ldk and logs.Idr, from the URL hxxps://vpsi17864[.Jinmotionhosting[.Jcom/~learns29/teams_demo/popo/. These files
were written to the C:\Users\Public\ directory and then loaded into memory using reflection. The PowerShell

code responsible for this behavior included the following construct:

« [System.Reflection.Assembly]::Load([byte[]]($f1)); [Obfuscator.A]::Main($f2)

* Write-Files -file $pathl -buffer $Dllstr;Write-Files -file $path2 -buffer
$Serstr;[byte[]] $bufferl = (Get-Content $pathl).Split(’,’) | ForEach-Object { $_ /
30 };[string] $buffer2 = Get-Content $path2;Invocation -fl $bufferl -f2 $buffer2;}”

In the PowerShell code above, $f1 represents the first-stage payload (logs.Idk) converted into a byte array by dividing
each comma-separated value by 30, while $f2 is the logs.Idr input string passed directly to the Main() method. This
script shows a classic fileless loading pattern that retrieves encoded data from the web, decodes it in memory, and
invokes a method in a dynamically loaded .NET assembly without writing an executable to disk in its final form.

After converting the byte arrays from logs.ldk, we were able to apply dnSpy, which is a .NET debugger and decompiler
used to analyze, edit, and reverse engineer .NET assemblies.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTLIGHT / 4

Reverse Engineering with dnSpy

Obfuscator.dll

Using dnSpy to inspect the deobfuscated logs.Idk DLL, we found that it reconstructs and writes a secondary VBScript
to disk, Ab.vbs, effectively regenerating the same PowerShell logic seen earlier. This VBScript is then registered in

a scheduled task named “Skype Updater,” ensuring persistence across reboots under the guise of a legitimate
application. A secondary script, MicrosoftUpdate.vbs, appeared to serve as the initial launcher for the campaign

but was deleted shortly after execution, likely as an anti-forensic measure.

Figure 4 below depicts a screenshot of the .Idk file once converted to a DLL and loaded into dnSpy. This shows the file
“Obfuscator” with Classes “A,” “Core,” and “Tafce5.” From the previously mentioned command (copied again below),
we can see $f1 (Idk/Obfuscator file) being loaded, followed by the calling of Main() passing $f2 (.Idr file):

[System.Reflection.Assembly]::Load([byte[]]($f1)); [Obfuscator.A]::Main($f2)

A.Main()

Figure 4: Obfuscator.dll file breakdown in dnSpy.

At this point, we can look at the Main() function with the buffer parameter (the .Idr file). It sets a boolean variable
named “flag” to the return value of Tafce5.Execute() which can be seen on next page:

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 5,

Figure 5: Obfuscator.A.Main() content.

Tafce5.Execute()

Figure 6: Obfuscator.Tafce5.Execute() content.

Inside of this Execute() function, the variable “flag” is initialized and then four more functions are called:

Tafce5.InjectPS(): PowerShell Host Creation

This function creates an embedded PowerShell runspace and executes a simple Get-Process command. This acts as
a sandbox test to verify that PowerShell scripting is in process, which is often used as a precursor to a more malicious
PowerShell injection.

Tafce5.PatchAMSI(): AMSI Bypass

This function locates and disables Amsilnitialize from amsi.dll, which is responsible for scanning scripts at runtime.
It uses memory manipulation to overwrite parts of AMSI functions, preventing detection of future script-based
payloads, such as PowerShell commands.

Tafce5.PatchETW(): ETW Bypass

This method locates the ETW (Event Tracing for Windows) event writing routine (EtwEventWrite) and uses
VirtualProtect to change memory protections. It then overwrites part of the function to disable Windows telemetry
and event logging, reducing the malware’s visibility to EDR tools.

Core.CreateLoginTask(): Persistence via Task Scheduler

This creates a scheduled task named “Skype Updater” that silently executes a PowerShell script referencing the
malicious payloads (logs.ldk and logs.Idr) located in path C:\Users\Public. This ensures the malware reloads at logon
while masquerading as a legitimate update process.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 6

Core.CreateLoginTask()

Figure 7: Obfuscator.Core.CreateLoginTask() content.

Diving into the CreatelLoginTask() from the screenshot above, we can see this function is responsible for establishing
persistence by registering a Windows Scheduled Task named “Skype Updater,” a name chosen to blend in with
legitimate system tasks. The function first assembles a PowerShell command string that reconstructs the malicious
logic seen in the previously extracted Update.vbs and MicrosoftUpdate.vbs scripts:

powershell -ExecutionPolicy Bypass -WindowStyle Hidden -Command “function
Invocation{param($fl,$f2)...}"

The command above is the same reflection-based loader that we previously observed executing from the VBScript,
and it does the following:

+ Loads logs.Idk from C:\Users\Public as a byte array, divides each byte by 30, and then loads it as a .NET assembly.

+ Passes logs.Idr as a second parameter to the Main() function of the
loaded assembly using [Obfuscator.A]:Main($f2).

The task then writes this PowerShell code to a temporary script path C:\Users\Public\Ab.vbs, as seen in SentinelOne's
Deep Visibility (see figure 8 below).

Figure 8: SentinelOne event showing WScript.exe running Ab.vbs

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 7

After writing the script, the function uses the COM interface TaskScheduler to create a scheduled task that executes
WScript.exe to launch the malicious VBScript on user logon. It even includes logic to check for and delete any pre-
existing task with the same name to ensure successful overwrite.

Scheduled Task

When running this malware in a private sandbox, we see the creation of a scheduled task with parameters observed

in dnSpy. This task will run at user logon, stop if computer switches to battery power, stop itself if the task takes longer
than three days (see figure 12 below), and execute the Ab.vbs seen in dnSpy and SentinelOne that contains the original
malicious PowerShell script that executes Ab.vbs.

The scheduled task ensures the obfuscated .NET loader is re-executed after every login, sustaining control even after
reboots or user logouts.

Through this scheduled task, the threat actor automates the same covert chain of execution observed during live
incident response but does so programmatically for repeatability and resilience. This couples the VBScript-based
loader to the obfuscated .NET payload while minimizing detection by relying on native Windows features like
TaskScheduler and WScript.

Core.Run()

Once the CreatelLoginTask() function is successfully completed with no errors, it will return a boolean value of “True”
to the Execute() function, which in turn returns a “True” value back to the Main() function. Once this value is true, the
program moves on to the Core.Run() function passing the argument “buffer” (Idr file) as shown in figure 9:

Figure 9: Obfuscator.Core.Run() content.

This Core.Run() function takes a string (in this case, the contents of logs.Idr) and performs two main operations:

« It calls getBytes(file) to transform the obfuscated string into a byte array.

+ It then loads the resulting .NET assembly into the current AppDomain using AppDomain.
CurrentDomain.Load(), and immediately invokes its EntryPoint.

These operations enable an attacker to execute additional malicious code without touching disk again, since the entire
operation is done in memory.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 8

GetBytes()

Figure 10: Obfuscator.Core.getBytes() content.

The function Core.getBytes() with the argument “buffer” (Idr file) depicted in figure 10 reverses the obfuscation
applied to the .Idr file. This is achieved through the following steps:

+ The file contents are assumed to be a comma-separated list of integers.

« Each value is divided by 30 and cast into a byte.

+ The resulting array of bytes is the original payload, which can be loaded and executed.

Figure 11: AsyncClient.exe breakdown in dnSpy.

The .Idr file retrieved earlier in the infection chain was obfuscated using this
numeric transformation. The script divides each value by 30 to recover the
original bytecode of the second-stage payload. This is a basic form of
encoding designed to evade signature-based detection, and the Run() function
immediately executes the malicious logic it reconstructs from that data.
These operations explain how the original VBScript and PowerShell loader
chain culminates in the dynamic execution of a memory-resident .NET
assembly which supports the fileless, evasive nature of this AsyncRAT-
related malware campaign.

AsyncClient.exe

After examining the initial logs.Idk file, our SOC team uses the steps observed
within dnSpy to break down the second piece of this malware, logs.Idr. Once
converted and loaded into dnSpy, we can see the contents of AsyncClient.exe
depicted in figure 1.

As shown in figure 11 this is a much bigger file than the initial one our team
analyzed. The file contains the namespaces Client, Client.Algorithm, Client.
Connection, Client.Handle_Packet, Client.Helper, and Client.Install, with

many classes and methods in each. In this section, we will focus on the key
pieces of AsyncClient.exe, including the namespaces, decryption breakdown,
important artifacts, and general functionality.

The AsyncClient.exe binary analyzed in dnSpy reveals a modular Remote
Access Trojan (RAT) client, heavily based on the AsyncRAT framework.

The structure includes dedicated namespaces for encryption routines,
persistence, anti-analysis, and remote command handling, all coordinated to
maintain stealthy control over an infected host.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 9

Client.Program.Main()

Figure 12: Client.Program.Main() content.

The Main() method in the Client.Program class (see figure 12 above) is the entry point of the AsyncClient malware and
sets up its runtime behavior. It begins by invoking three functions from BypassAmsi: ForceLoad AMSI(), PatchAMSI(),
and PatchETW() — which are designed to disable or weaken Windows Antimalware Scan Interface (AMSI) and Event
Tracing for Windows (ETW). Accordingly, these functions reduce the malware's visibility to defenders. The malicious
software then introduces a delay based on the Settings.Delay value, which may help it evade sandbox detection.

Once the delay is completed, the malware checks whether initialization of runtime settings was successful via Settings.
InitializeSettings(), exiting if not. It proceeds to establish a mutex using MutexControl.CreateMutex() to prevent multiple
instances from running simultaneously. If enabled

by settings, the malware performs anti-analysis checks (Anti_Analysis.RunAntiAnalysis()), installs persistence
mechanisms (NormalStartup.Install()), and attempts to mark itself as a critical system process via ProcessCritical.Set()
which can crash the system if the malware is killed.

The function Methods.PreventSleep() is called to keep the host system awake, followed by the launch of background
threads for activity tracking and, if configured, offline keylogging (LimeLogger.callk()). Finally, the program enters an
infinite loop where it checks whether the ClientSocket is connected; if not, it attempts to reconnect and reinitialize
the client, ensuring ongoing communication with the attacker’s infrastructure. This logic is central to maintaining
persistence, executing payloads, and receiving commands post-infection.

We will now explore the following two sections called within Main(): Settings.Install and NormalStartup.Install.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 10

Client.Settings.Install()

The Settings.Install() portion within this malware sample plays a critical role in enabling persistence and stealthy
reinstallation behavior. It is initially stored as a Base64-encoded, AES-encrypted string shown below:

SL4BIInLwOQ35c+FQHJibxjmtQugvil34MMeliFzdF2HJH+ej106ffsImJjOnUV33Szz8zv3ZU+2Kuadcf5EPA==

This is decrypted during runtime by calling the InitializeSettings() method (see figure 13 below). This method uses an
AES-256 decryption routine, implemented in a custom AES256 class, and a preloaded key (which is also Base64-
decoded) to transform encrypted configuration fields like Install into readable strings.

Figure 13: Client.Settings.InitializeSettings() decrypt section.

Figure 14: Client.Settings.InitializeSettings() hard-coded, encrypted variables.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 11

Once decrypted, the Install field instructs the malware to execute its persistence installation routine. This includes
copying itself to a directory such as %AppData% (as seen in InstallFolder in figure 14 on the previous page) and
renaming or relocating itself to remain hidden from the user.

Storing critical flags and values in an encrypted format makes static analysis more difficult and is used to evade
simple string-based detection. The next step in this analysis involves reviewing the AES256 class to understand
how the malware decrypts its configuration data. This includes verifying whether it uses common encryption modes
like CBC (Cipher Block Chaining) or ECB (Electronic Codebook), which determine how data blocks are processed
during encryption. Additionally, we assess what padding schemes (used to align data blocks) and initialization
vector (IV) methods are implemented, as these elements significantly impact the strength and behavior of the
decryption process.

ClientSettings.aes256.Decrypt()

Pivoting into Settings.aes256.Decrypt(), we review the code to determine how to decrypt the hard-coded, encrypted
string values. The Settings.aes256.Decrypt() function serves as the core decryption routine used to recover encrypted
configuration values within the AsyncRAT client. These values, stored as Base64-encoded strings, are passed to

the Decrypt(string input) method, which first converts the input to a byte array and then calls the overloaded
Decrypt(byte[] input) method for the actual AES decryption.

The decryption process begins by validating the input and loading it into a MemoryStream. The encryption scheme
uses AES-256 in CBC mode with PKCS7 padding. A key and a separate HMAC authentication key are derived from
a master password using the PBKDF2 key derivation function (Rfc2898DeriveBytes) with a static 32-byte salt (Salt)
and 50,000 iterations. The derived keys are stored in _key (32 bytes) and _authKey (64 bytes) fields respectively.

Figure 15: AES256 configuration class initialization

Figure 15 demonstrates the AES256 class constructor, which uses PBKDF2 to derive the AES key and HMAC
authentication key from the provided master key. The class pulls the first 32 bytes as the AES key and the next 64
bytes as the HMAC key.

Once the input is loaded, the first 32 bytes are expected to be an HMAC-SHA256 hash. The code verifies message
authenticity by computing the HMAC of the remaining encrypted content and comparing it to this stored value
using the constant-time comparison function AreEqual. If the HMAC check fails, a CryptographicException is thrown,
effectively preventing tampering or replay attacks.

Before any decryption occurs, the input is authenticated by comparing an HMAC-SHA256 signature. This ensures
message integrity and protects against tampering or replay attacks.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 12

Figure 16: HMAC verification for authenticity.

As shown in Figure 16 above, the Decrypt() method first checks that the HMAC signature matches using a constant-
time comparison.

Figure 17: IV extraction.

Once the HMAC is validated, the next 16 bytes are extracted as the AES Initialization Vector (IV), illustrated in figure 17.

Figure 18: AES decryption process

The remaining encrypted payload is decrypted using AES-256 in CBC mode with PKCS7 padding. Figure 18 displays
this operation using a CryptoStream object to decrypt the ciphertext and return the plaintext as a UTF-8 string.

Figure 19: Static salt for key derivation.

The PBKDF2 implementation uses a hardcoded static salt, as seen in figure 19, which may have implications for key
unigueness across multiple samples.

This mechanism ensures confidentiality and integrity of the configuration values embedded in the malware. As

an encryption layer, it is used to hide server addresses, execution flags, and behaviors such as anti-analysis or
persistence settings, all of which are loaded at runtime after being decrypted by this method. Understanding and
replicating this exact function is crucial to extracting the malware’s configuration and uncovering its command and
control infrastructure.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 13

After following these steps within a Python script, we were able to decode the hard-coded values as shown in figure 20:

Figure 20: Decoded string values from Settings.Install().

Now that we have these decrypted artifacts, we can provide them to the customer and continue to review this code
to look at functionality.

Once the settings are initialized, the program pivots to NormalStartup.Install().

Client.Helper.NormalStartup.Install()

The NormalStartup.cs file is responsible for establishing persistence and ensuring the malware runs from a controlled
install location. It first checks whether the malware is already executing from the target path, defined in the Settings
class and expanded to an environment-based directory like %AppData%. If not, it attempts to terminate any
duplicate instances, copies itself to the install path, and sets up persistence. Depending on whether the malware

has administrative privileges, it either creates a high-privilege scheduled task using schtasks or sets a Run key in the
registry to auto-launch on user login. After copying itself, it uses a temporary batch script to relaunch from the new
location and delete the script to remove evidence, while the current process exits. This routine guarantees that the
malware starts with each reboot and ensures that only one clean copy runs, minimizing the chance of user detection.

Figure 21: Install path check and process conflict resolution.

The section depicted in figure 21 above resolves the intended install location (%AppData%\filename.exe) using
decrypted values from Settings.InstallFolder and Settings.InstallFile. It determines where the malware is currently
running to check if it's already installed in the correct location. If another instance is already running from the install
path, it kills it to avoid race conditions or detection.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 14

Figure 22: Persistence mechanism: scheduled task or registry run key.

The program will then determine if it has admin rights, as seen in figure 22. If so, it adds a scheduled task that runs on
login with the highest privileges, ensuring execution at startup. If not, it adds a registry entry to HKCU Run, ensuring
execution without needing admin access.

Figure 23: Self-Restart via batch file execution.

The final section depicted in figure 23 prepares for exit and launches a new copy via .bat through the following steps:
 Delay for 3 seconds
+ Launch the new copy from install path
+ Delete the batch file

« Terminate the current process

These steps ensure that the final running binary is the one copied to the intended install location and that malicious
artifacts are erased.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 15

Client.Connection.ClientSocket()

Going back into SentinelOne events, our LevelBlue SOC team notices the entry for the C2 DNS matches that of
dnSpy below.

Figure 24: dnSpy analyzer of C2 variable.

Our SOC analyzes the host variable that was decrypted as 3osch20[.Jduckdns[.]Jorg and uses dnSpy functionality
to see where it is “Read by” and “Assigned by” (see figure 24 above). Following this path, we now enter into Client.
Connection.ClientSocket (shown in figure 25 below). The ClientSocket class is used to establish and maintain the
malware’s encrypted command and control (C2) connection.

Figure 25: C2 connection and packet parsing.

ClientSocket initiates communication with a remote server, the 3osch20[.]Jduckdns[.Jorg domain, by either pulling an
address from the Settings.Hosts and Settings.Ports strings or resolving a dynamic address from a Pastebin link (that
was blank in this version of the code). Once a connection is established, it wraps the TCP socket in an SsIStream,
optionally validating the server’s certificate seen in the decoded strings.

After authentication, it sets up timers to send KeepAlive Ping packets and track connectivity using a Pong mechanism.
Data is sent in a custom format where the first four bytes represent the message length. Packets are then parsed

via MessagePack and dispatched to the Packet.Read() function, where different commands from the server can be
executed, including surveillance, file exfiltration, or remote shell access.

To summarize:

+ InitializeClient: Entry point for setting up the socket connection, loading settings from
either hardcoded values or a remote Pastebin, and configuring the SSL stream.

- Send / ReadServerData: Implements length-prefixed, asynchronous message exchange over the
encrypted channel. The actual payloads are likely encoded with MessagePack and routed to handlers.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 16

« KeepAlivePacket / Pong: Maintains connection health and may double as a rudimentary
heartbeat or check-in system, reporting system activity back to the operator.

* Reconnect: Cleans up and attempts to reestablish a dropped connection.

Figure 26: Transmitting system profile data

In figure 26 above, we see the utilization of ClientSocket.Send(IdSender.Sendinfo()). We can trace this to see what the
malware is attempting to send.

Figure 27: Host fingerprinting via IdSender.

This brings us to the Client.Helper Namespace shown in figure 27. The IdSender class is responsible for collecting
detailed system fingerprinting and wallet-related reconnaissance data from the victim’'s machine and preparing it
for exfiltration to the command and control (C2) server. This data is structured using the MessagePack format, with
each key representing a particular attribute of the host. Initial fields include the hardware ID (HWID), username, OS
information, executable path, privilege level (admin/user), currently active window title, configured Pastebin C2 URL,
and installed antivirus product. These fields provide the attacker with environmental context that may influence
follow-up exploitation or payload deployment.

Figure 28: Scanning for cryptocurrency wallets in IdSender.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 17

A significant portion of the IdSender class is dedicated to scanning for installed browser extensions related to
cryptocurrency wallets, such as MetaMask, Phantom, Binance, TronLink, Coinbase, Ronin, BitPay, and others. This is
achieved by traversing known extension paths under Chrome, Brave, Microsoft Edge, Opera, and Firefox profiles
(see figure 28 on previous page). This code snippet flags specific extension IDs hardcoded in the binary that are
often tied to Web3 wallets and stores corresponding keys in the outbound MessagePack object (e.g, Meta_Chrome,
Phantom_Brave, and Trust_Chrome). The presence of these entries informs the operator whether the infected
machine is a valuable target for credential theft or wallet harvesting.

Figure 29: Checking for wallet applications by searching for install directories.

Next, it checks for desktop wallet applications like Ledger Live, Atomic, Exodus, Electrum, Coinomi, Binance, and Bitcoin
Core by searching for their install directories within the %AppData% or %LocalAppData% folders (figure 29). If any are
found, a boolean “Walltes” flag is set to “True” and the relevant MessagePack keys are set to indicate which wallets

are installed.

The resulting payload, returned as a byte array by Sendinfo(), is used to inform the attacker of wallet presence, system
configuration, and user context before issuing further commands. This class illustrates AsyncRAT's dual function as
both a Remote Access Trojan and a reconnaissance tool targeting crypto assets.

Client.Helper.LimeLogger()

While we are reviewing Client.Helper, we see another suspicious class named LimelLogger (figure 29). The Client.Helper.
LimelLogger is a keylogger designed to silently capture user keystrokes and write them to a temporary log file.

Figure 30: LimeLogger keylogger hook initialization.

It operates by setting a global Windows keyboard hook using SetWindowsHookEx, specifically targeting the
WH_KEYBOARD_LL constant to intercept keypress events system-wide.

Figure 31: Persistent keylogger execution loop.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 18

The callk() method shown in figure 31 (previous page) initiates this hook and starts a continuous message loop via
Application.Run(), allowing the keylogger to remain active in the background.

At the core of the logging mechanism is the HookCallback method depicted in figure 32 below, which processes
each keypress.

Figure 32: HookCallback for key processing

This method identifies the pressed key'’s virtual key code, determines if modifier keys like Shift or Caps Lock are active,
and translates the raw input into a readable character using the current keyboard layout through the ToUnicodeEx

API. Special keys like Enter, Backspace, Tab, Ctrl, and function keys are labeled accordingly to make the log human-
readable. If the user switches between applications, the keylogger detects the change in the active window title and
logs it as a header, allowing the attacker to see which applications were used during typing.

The logger writes each entry to a file named Log.tmp located in the system’'s %TEMP% directory, as seen in figure
33 below.

Figure 33: Temporary log file path.

This file serves as the staging area for all captured keystrokes, which can later be exfiltrated by other components of
the malware.

Overall, LimeLogger functions as a persistent and context-aware surveillance tool. It uses native Windows API calls
via Dllimport to ensure compatibility and stealth, making it a critical and dangerous component within the malware’s
ecosystem.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 19

Client.Handle_Packet.Packet()

The final namespace we will review is the Client.Handle_Packet. The Client.Handle_Packet.Packet class is the core
command dispatcher for this malware’s client-side logic. It is responsible for receiving, parsing, and executing
commands sent from the command and control (C2) server. These commands are sent as MessagePack-encoded
objects, and the Read() method is the entry point for processing them (see figure 34 below).

Figure 34: Read() method content in Client.Handle_Packet.Packet

Based on the “Packet” string field in the received data, the method shown in figure 34 routes execution to the
corresponding malicious functionality. This is the main dispatcher for handling C2 instructions.

Figure 35: Password theft and web browser credential exfiltration example
The passload and WebBrowserPass cases depicted in figure 35 above demonstrate commands to steal stored

passwords and web browser credentials. When these commands are received, the malware decompresses and
executes embedded credential-stealing modules then sends the results to the C2 server.

Figure 36: Clipboard hijacking operations

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 20

The gettxt and settxt packets shown in figure 36 perform clipboard theft. This allows attackers to capture copied data
or replace clipboard content with malicious payloads.

Figure 37: System file manipulation for network blocking.

The Block command in figure 37 manipulates the system’s hosts file to block specific domains. By redirecting domain

names to localhost, the malware can prevent victims from accessing update servers, antivirus definitions, or security-
related websites.

Figure 38: Defense evasion by disabling AV services

The Avast command in figure 38 dynamically loads and executes assemblies to disable antivirus software. The
malware uses .NET reflection and embedded DLLs to invoke methods that silently terminate security processes.

Figure 39: Keylogging dData eExtraction

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 21

The klget command in figure 39 exfiltrates logs gathered by the malware’s keylogger component from the victim’s
system. It reads keystroke logs stored in the temp directory and transmits them to the C2, enabling the attacker
to harvest sensitive user input such as passwords or chat messages.

Several commands dynamically load .NET assemblies (plugins) sent by the server, which are Base64 and/or GZip
compressed DLLs. These are decompressed via a helper class (Zip.Decompress) and executed in-memory using
reflection. For example, commands like “Fox”, “Chrome”, “Wallets”, “DiscordTokens”, and “Net35" all rely on plugin
execution via the Plugins() method or the Invoke() method. The Plugins method scans for and invokes any static
method named “PL" in the dynamically loaded assembly. In contrast, Invoke() targets a method called Run inside
a class named Plugin which uses dynamic call-site invocation from C#’s System.Runtime.CompilerServices.

The code also contains anti-detection behavior, such as killing specific processes (killps, KillPs()), deactivating User
Account Control (uacoff), and resetting system scaling or the host’s file to evade detection. Some commands even
spoof persistence by pretending to modify the registry or drop exclusions into Windows Defender (WDExclusion).
The malware maintains a queue (List<MsgPack> Packs) of received plugins not yet executed and handles
de-duplication or delayed execution based on hash matching.

Overalll, this class represents the malware's remote procedure call (RPC) handler, a critical backdoor mechanism
that allows the attacker full control over the infected machine. Through this system, the malware achieves modularity,
stealth, and adaptability by loading new capabilities on demand.

Conclusion

The LevelBlue SOC team'’s analysis of the command structure, Obfuscator, and AsyncClient.exe reveals critical insights
into the capabilities, encryption methods, and command-handling logic of a sophisticated Remote Access Trojan
(RAT). By examining key elements, such as the AES decryption routines, plugin architecture, and packet dispatching,
we understand how the malware maintains persistence, dynamically loads payloads, and exfiltrates sensitive data

like credentials, clipboard contents, and browser artifacts. These findings enable the creation of targeted detection
signatures and support endpoint hardening based on observed behaviors.

For our customers, this reverse engineering effort yields actionable intelligence. Hardcoded encryption keys and C2
domains can be used for retrospective analysis to identify additional compromises across the environment. Beyond
immediate threat mitigation, this deeper understanding enhances overall incident response readiness and resilience
against future threat variants. Sharing these behaviors and techniques with internal teams allows for proactive threat
hunting, enabling defenders to recognize patterns, anticipate attacker evolution, and improve investigative focus — all
of which ultimately advance both detection and response capabilities.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025 THREAT SPOTL IGHT / 22

The following table includes indicators of compromise (I0Cs) identified by LevelBlue SOC through their investigation.

File/Domain/IP

Obfuscator.dll

SHA1 Hash Value/Description

801078488aacfe’7240f90f853d7878edacO15elc

Notes

.Net payload to load
AsyncClient.exe and
establish persistence

AsyncClient.exe

ace8b94fa667893aac31e07ce8dd3c/fOca8df64

Core AsyncRAT payload.
Implements persistence,
plugin loading,
keylogging, remote
command handling

logs.Idk

eOfb15660965945c8e36e5e039d0e00d8b47ab32

Initial Byte Array for
Obfuscator.dll

Update.vbs

41ab5adcc7bl4dal7dfa2ecfc1822f12aae’7dac3

VBScript loader/
persistence script

MicrosoftUpdate.vbs

58d45be45628dd29cdd9d64fd51ffdc7c5f84d6d

Alternative VBScript
persistence mechanism

ScreenConnect.
ClientService.exe

162255e¢312¢519220a4700a079f02799ccd21d6

Remote Access .exe

3osch20[.]Jduckdnsl.]org

C2 Domain

AsyncRAT Command
and Control server

relay.shipperzonel[.Jonline

ScreenConnect Relay Domain

Facilitates
ScreenConnect-based
remote access

relay.citizenszonel.Jsite

Alternative ScreenConnect Relay Domain

Suggests fallback or
redundancy in access.

vpsl17864[]
inmotionhosting].]
com/~learns29/teams_
demo/popo

Payload Hosting URL

Hosted encrypted
payloads (.Idk / .Idr).
Served as delivery stage
during execution.

103[.]229[.181[.]203

C2 IP Address

Associated with
3osch20[.]Jduckdnsl.]org
C2 traffic.

©2025 LevelBlue Intellectual Property. LevelBlue logo, and registered trademarks and service marks of LevelBlue Intellectual Property
and/or LevelBlue affiliated companies. All other marks are the property of their respective owners. | 728TS 08-2025

THREAT SPOTLIGHT /23

